1	$1.5 \times 2 \times 8 \ (= 24 \ (\text{cm}^3))$			M1	for finding the volume of the cuboid
	e.g. $(V =) \frac{5.73 \times 1000}{19.32} (= 296.58)$			M2	complete method to find the volume of statue or
	19.32				the mass of one block, could work in g or kg
	or				(if not M2 then award M1 for correct use of density
	(<i>M</i> =) 19.32 × "24" (= 463.68)				formula e.g. $19.32 = \frac{5.73 \times 1000}{V}$ or $19.32 = \frac{M}{"24"}$
	e.g. "296.58" ÷ "24" (= 12.3576) or "5730" ÷ "463.68" (= 12.3576)			M1	could work in g or kg
		13	5	A1	cao
					Total 5 marks

2	$30 = \frac{27}{1.2 x}$		3	M1	Or for $\frac{27}{30}$ (= 0.9)
	$1.2x = \frac{27}{30}$ or $36x = 27$ or $22.5 \div 30$			M1	
		0.75 oe		A1	
					Total 3 marks

3	$0.14 = \frac{56}{w^2}$ oe or $56 \div 0.14 (= 400)$		4	M1 for using the given formula correctly
	$\sqrt{\frac{56}{0.14}}$ or $\sqrt{400'}$ (=20)			M1 for a method to find w
	'20' × '20' × '20' oe			M1 (dep on M2) for a method to find the volume of the cube
		8000		Al
				Total 4 marks

4	19.3 × 150		2	M1	for 19.3×150	
		2895		A1	for 2895	
						Total 2 marks

5	eg (V=) $\pi \times \left(\frac{18}{2}\right)^2 \times 3.5 = 890.(64)$ or $\frac{567}{2}\pi$)		3	M1	correct method to calculate volume
	eg (7.04 × 1000) ÷ "890.64"			M1	correct method to calculate density (if volume is incorrect, their value can be used if clearly labelled)
					accept use of 7.04 or an incorrect conversion from kg to g for mass
		7.9		A1	accept 7.9 - 7.92
					Total 3 marks

6	$1.4 = \frac{72}{\text{(area)}}$	- oe		4	M1
	$(area =) \frac{72}{1.4}$	$(=\frac{360}{7}=51.4)$ oe			M1 (51.4 or better)
	$r = \sqrt{\frac{"51.4" \times}{\pi}}$	$\frac{18 \text{ or}}{\frac{\pi}{1000}} (= 4.046) \text{ and } \pi \times \text{``} 4.046 \text{``}^2 \times 18$			M1 allow use of πr^2 to find the radius and then using $\pi r^2 h$ to find the volume
			926		A1 Allow 925 – 928
					Total 4 marks

7	$\pi x^{2} + 2\pi x \times 3x + \frac{1}{2} \times 4\pi x^{2} = 81\pi \text{ oe or}$ $9x^{2} = 81\text{ oe}$ $\mathbf{or} \ 2\pi x \times 3x + \frac{1}{2} \times 4\pi x^{2} = 81\pi \text{ oe or } 8x^{2} = 81$		6	M1 for setting up an equation (in a single variable ie x or r) for the total surface area of the shape or for the curved surface area.
	$(x=)\sqrt{\frac{81}{9}}(=3)$			M1 solving their equation in the form $kx^2\pi = 81\pi$ (where k follows correctly from their surface area) to find x
	$\pi \times 3^{2} \times 3 \times 3^{4} + \frac{1}{2} \times \frac{4}{3} \pi 3^{3} \text{ oe}$ $(= 81\pi + 18\pi = 99\pi = 311.(017))$			M1 (indep) for substituting their value of x to find the volume of the shape.
	99π or $311.(017)$			Al
	840 '311' (= 2.7) oe			M1 (dep on the 3rd M) for using the formula for density
		aluminium		A1 for aluminium and correct working leading to 2.7
				Total 6 marks

8	eg $\pi \times 3^2 \times 7 \ (= 63 \pi \text{ or } 197.9)$		3	M1	for method to find the volume of Solid A
	eg $\frac{2000}{\text{[vol A]}}$ or $\frac{3375}{450}$ (= 7.5 oe) or $\frac{2000 + 3375}{\text{[vol A]} + 450}$			M1	(indep) for method to find the density of Solid A , B or C , allow use of their volume for Solids A and C
	Correct answer scores full marks (unless from obvious incorrect working)	8.3		A1	accept 8.29 – 8.31
					Total 3 marks

9	$(V =)$ $\frac{1950}{7.8}$ $(=250)$ or $7.8 = \frac{1950}{w \times 5 \times 4}$ or $7.8 = \frac{1950}{w \times 20}$		3	M1	for correct method to find volume using mass ÷ density or a correct equation with correct expression for volume (may be embedded in another
	eg $w = \frac{1950}{7.8 \times 5 \times 4}$ or $20w = \frac{1950}{7.8}$ or $20w = "250"$ or $4 \times 5 \times w = "250"$			M1	calculation) for a fully correct equation in w or a fully correct calculation to find the value of w (may be labelled eg x or L)
	OR eg 1950 5×4×7.8 or 1950 ÷ (20 ×7.8) or 1950 ÷ 156 or "250" ÷ 20 Correct answer scores full marks (unless from	12.5		Al	
	obvious incorrect working)				Total 3 marks

10	255 or 265 or 2.85 or 2.75		4	B1	for sight of a correct upper or lower bound
	$(V=) \frac{4}{3}\pi \times (2.75)^3$			M1	calculation to find V using
					$V = \frac{4}{3}\pi r_{LB}^{3}$
	$(=\frac{1331}{48}\pi \text{ or } 87.1137)$				3
	48				where $2.75 \le r_{LB} < 2.8$ or
					use of 2.85
-	265π			M1	method to find UB of density,
	$(D=) \frac{265\pi}{\frac{4}{3} \times \pi \times 2.75^3}$			1,11	using LB of V and UB of M
	$\frac{1}{3} \times \pi \times 2.75^{\circ}$				for correct substitution into
	(condone missing π for 265 π (also				$D = \frac{\pi M_{UB}}{V_{LR}}$
	may have cancelled out π))				V_{LB}
					where $260 < M_{UB} \le 265$ and
					$87.11 \le V_{LB} < 91.95$ oe
*		9.56		A1	dep on M2 and all correct bounds
					used
					allow 9.55 - 9.56
					Total 4 marks